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ABSTRACT: A three-dimensional numerical model, in which matter is discretized into a system of mass
points connected with springs, is developed for the study of rocks. This model applies to two dynamic
problems: one is stress concentration and failure initiation at a crack tip in plate subjected to a uniform
tension and the second is a wave propagation problem in plate. The first numerical example represents
the value of the stress intensity factor calculated by the linear elastic fracture theory. The stress state
reaches the limitation (tensile strength), then tensile failure surface initiates at the tip. The failure surface
is progressively developed and the rate of the development is deeply related to the value of the damping
constant in the equation of motion. The second is the propagation of plane harmonic wave. Directional
characteristics for the wave through the two lattice structures are displayed.

1 INTRODUCTION A three-dimensional numerical model, in which
matter is discretized into a system of mass points
On the macroscopic level of observation, rock  connected with springs, is developed for the study
can be seen as a thing consisting of a number of rocks. The relationships between the microme-
of different and distinct particles are adhesively  chanical parameters of the springs and the macro
interacting as a result of micro-structural forces.  material elastic constants of the matter have been
With such a representation, the modelling of  derived and the explicit finite difference scheme is
the mechanical behavior of rock materials may adopted for solving the system of the equations of
be generally divided into two categories. Firstly, = motion (Nishimura et. al. 2014). The local strains
there are the discrete models, for which the equi-  are evaluated by the relative normal and shear dis-
librium conditions, the kinematic conditions and  placement vectors between particles. It is known
the constitutive behavior are formulated for each  that the rigid rotation should not produce strain
individual micro-structural element with respect energy. Therefore, in this method, the rotation
to its neighboring micro-structural elements. Sec-  related term is expressed with the Euler angle and
ondly, there are the continuum models, where the  is removed from the calculation of the relative
equilibrium conditions, the kinematic conditions  shear displacement vector. The stress state is evalu-
and the constitutive behavior are formulated for  ated on each nodal point and failure can be exam-
an assembly of micro-structural elements, using ined based on a failure criterion.
the continuum concepts of stress and strain. A In this paper, this model applies to two dynamic
considerable advantage of discrete models in com-  problems: one is stress concentration and failure
parison to continuum models is that the inhomo- initiation at a crack tip in plate subjected to a uni-
geneous effect at the micro-level can be takeninto  form tension and the second is a wave propaga-
account more accurately and the dynamic failure  tion problem in plate. The first numerical model
process can be properly described. However, the  represents the value of the stress intensity factor
relation between representative micro-structural  calculated by the linear elastic fracture theory. The
elements in a macro-structural configuration has  stress state reaches the limitation (tensile strength),
yet to be developed, which causes the discrete  then tensile failure surface initiates at the tip. The
models to embody the procedure to get the rela- failure surface is progressively developed and the
tion between the micro-structural parameters and  rate of the development is deeply related to the
the macro properties, such as Young’s modulus  value of the damping constant in the equation of
and Poisson’s ratio. motion. The second is prepared to simulate the
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propagation of plane harmonic wave using two
different lattice structures. Directional character-
istics for the wave propagation through the both
lattice structures are displayed. This model will be
examined by numerical tests before being applied
to any case study in this paper.

2 DISTINCT ELEMENT MODELING
FOR ELASTICITY

2.1 Physical model and the equation of motion

The body to be analyzed is divided into small por-
tions and is represented by a system of points
linked together with the neighboring points as
shown Figure 1. The particles and bonds form a
network system representing the material. For this
system, the equation of motion can be expressed as

mii +cua+ku="f (1)

where u represents the vector of particle displace-
ment, k is the stiffness, m is the mass matrix, ¢ is

xl
(a)
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kn
(b)
Figure 1. Modeling of the material: (a) linkage of two

points and coordinates system and (b) the normal and
tangential springs.

the damping matrix and f is the vector of external
force. Equation (1) is solved by using the explicit
finite difference scheme.

ii, =i[f—cu, —ku, | )
m

The displacement of particle at time 7+4¢ can be
expressed as

Au, = Au, ,, +ii,Ar? 3)

where Au, =u,,,-u,. The new position of particle is
also expressed as

u,, =u, +uAl+i,Ar/2 4)

[+Ar

The particle velocity at ¢ is given by

oou—u_,,
u =——"=8 4+ Ar/2 5
A7 At/ (5)

1

To keep the computation stable, the time step
could be chosen as

At < min(iJ (6)
CP

where d, is the contact length, that is the distance
between particles, and ¢, is the P-wave velocity.
For static simulation, the equations of motion are
damped to reach an equilibrium state under given
boundary conditions as quickly as possible. In this
modeling, the damping effect is incorporated as
written in the following.

ii, = i(ﬁ £ —sgn(, ) a3 f ) )

where « is the damping constant which is inde-
pendent of mechanical properties of the material.

2.2 Relating spring stiffness to the elastic
properties

We assume that the medium is loaded from zero
condition to an initial condition defined by the
strain ¢, and the stress o,. For such a system, one
can write the displacement for a particle (or ele-
ment) p with position x; as follows

uf =e;x? ®)
where e; should be a symmetric tensor which is cal-

culated by removing an asymmetric tensor from the
displacement-gradient tensor. The rotation-related
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term is removed from the relative translational
displacement between these two points, then this
method ensures that the calculated strain is inde-
pendent of rotational displacement (Nishimura et.
al. 2014).

The following contact law, which relates normal
and shear forces F,, Fi, to normal and shear rela-

tive displacements U, U holds at the contact

Y

n~ (n)?

Fy =k ©)

Let us assume that a contact m connects two
particles pl and p2 (see Figure 1), then the normal
and shear relative displacements can be written as

Uiy =2ty (10)

N N (11)

where the relative displacement at the contact Au,”
is given as

m — Pl 02| = mJm
A "i/(xf Xj ) eydi'l]

(12)

where /" is the normal unit vector. The total force
/; at contact m can be written as

[ = kAT T+ ke (Auy = AT L)
=(kr =k )(e 11 ) Irdy + ke I vd)y

s Gl

(13)

Notice that Einstein summation convention
with dummy subscript i, j, k, / is used in the pre-
ceding equations. The total strain energy stored
per unit volume is

H < 1 mym{£m mym £m
:7: Z‘E(efidb 1 f +edi' I} ) (14)

~I-

where N, is the number of contacts inside the
medium, V7 is the medium volume. The stress ten-
sor of the continuum can be obtained through the
classical elastic theory, and it can be written as
(assuming symmetrical stress) (Walton 1987, Rich-
ard & Leo 1988).

0=

1 &
Xty e dryse)

2 (15)

From Equations (13) and (15), we end up with

1 NF 1 m m Jm m2
sz(ks e/.,l, Ii dh

k m

m Jm Jm2
s LIIII dh

I/

(16)

m=1

+ (k‘/‘n _ k:n )e](] ]’m I/f_n ],r{n Ilrnd];n'l )

The constitutive matrix C,,, in the classical elas-
ticity theory is expressed as

o, =C

ijki

(17)

1€k

and finally, by substituting Equation (17) into
Equation (16), C;;, can be given as

Ll (1'”1"5 + IS, + IS, + IS,

)
+{ky = k)1 LIy
(

18)

where &, is the Kronecker’s delta. Then, the rela-
t10nsh1p the micro-mechanical parameters k,, k,
and the macro material constants the Young’ mod-
ulus E; and the Poisson’s ratio v, can be obtained
by comparing Equation (18) to the classical elastic
matrix. As seen in this equation, the values of the
stiffness are influenced by the normal unit vector,
therefore, the lattice structure should be carefully
modeled.

3 NUMERICAL EXAMPLES

3.1

Brittle process is often observed in deforma-
tion and failure of rock. Numerical methods
and techniques have been proven as a powerful
tool to study rock mechanical characteristics.
In this paper, this numerical model applies to
two dynamic problems: one is stress concentra-
tion and failure initiation at a crack tip in plate
subjected to a uniform tension and the other is
a wave propagation problem in plate. Two lat-
tice geometries are prepared: a 6-bond cubic
lattice and an 18-bond cubic lattice as shown in
Figure 2.

One problem with Type 1 is that this structure
shows a Poisson’s ratio equals to 0, which makes it
impractical to model real rock-like materials. This

Plate subjected to uniform tension
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(a) Type 1

(b) Type 2

Figure 2. Two different structures of spring linkage: (a)
6-bond model and (b) 18-bond model.



problem is solved by introducing a diagonal inter-
action between particles. Using Equation (18), for
Type 2, the micro-mechanical parameters k,, k, are
obtained by

Ed
k — 00 1
"T50-20) (19
k= (1-4v))Ed, 20)

5(1+1)(1-21)

Equation (20) shows that the spring stiffness
of negative occurs wheny, is greater than 0.25.
For this condition, the numerical model shown
in Figure 4(a) indicates unstable behavior and
never reaches the quasi-static state under a given
static boundary condition. Therefore, numerical
results shown in this paper will be carried out for
v, <0.25. This negative effect of the Poisson’s ratio
in such lattice modeling has also been reported
(e.g. Zhao etal. 2011).

Figure 3(a) shows a problem of stress concentra-
tion and failure initiation at a crack tip in a plate
subjected to a uniform tension. Figure 3(b) is the
numerical model with W, =7.1 cm, L, = 14.1 cm
and a crack of 0.1 cm in width. Figure 4 shows the
schematic view of numerical results for stress dis-
tribution of o In Figure 4(a), the radius of the
particle is 0.1 cm and the total number of particles

Wy /2
|[«——»
2a <
> q
— | L =
S
)
L
~
y
(6] Lé X

(b)

Problem of stress concentration and failure

Figure 3.
initiation at a crack tip in a plate subjected to a uniform
tension (a) and numerical model using the lattice struc-
ture (b).
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(a) a=0

(b)2a/W=0.3

Figure 4. Numerical results of the plate model subject
to uniform tension without/with the crack. In figure (b),
the crack width is 0.1 cm.

Table 1. Numerical results of the stress intensity factor
and the tensile force, comparing with the values obtained
by of the linear elastic fracture theory.

)

PJP,
2alW Type 2 error (%) Type 2 error (o)
0.1 0.238 0.4 0.989 0.3
0.3 0.390 0.7 0.923 0.8
0.5 0.477 0.6 0.802 0.6
0.7 0.571 1.0 0.630 1.5

is 55836 ( = 36 x 141 x 11). Type 2 is selected as
the structures of spring linkage in this simula-
tion. The Young’s modulus and the Poisson’s ratio
are set 1000 MPa and 0.2 respectively. The stress
concentration is found at/around the crack tip in
Figure 4(b). Table 1 lists the values of the stress
intensity factor obtained from the numerical analy-



sis, in which P, is the tensile force acting on the
plate with the crack and P, is also the tensile force
acting on the plate of ¢ = 0 in y direction. Based
on the linear elastic fracture theory, the theoreti-
cal value of the stress intensity factor is given by
(Okamura 1976)

P~
I A N Q1)
wr 2w
7:; (22)
f 1+/(ﬁl"(2—aj
w
2a o poaw y
where F(W)_ ‘[U fsec;d{ (23)

kf is a value which is related to the boundary con-
dition and the value of W/L and is set 0.5 in this
analysis. Agreement can be recognized between
the numerical results and the theoretical values
calculated by the theory. For these static analyses
listed in Table 1, the value of the damping constant
appeared in Equation (7) is set 0.8.

The tensile strength of the plate is set 0, = 8 MPa
and the development of the tensile failure surface is
simulated. The time increment written in Equation
(6) is set At =107 sec. Figure 5 shows the numeri-

@ failure point

(a) a=0.8 (c) =0.4

(b) a=0.6

Figure 5. Schematic numerical results for stress distri-
bution of o, and tensile crack development in the com-
putation of the plate for three values of the damping
constant.

cal results at time ¢ = 10* sec. For dynamic case,
the damping term is often neglected (i.e. o = 0)
and the released elastic strain energy is fully trans-
formed into the kinetic energy of nodes surround-
ing the failure surface. In this analysis, numerical
trials have been executed with several values of the
damping constant to learn the effect of the factor
on the development of the failure surface and the
numerical stability. Figure 5 shows that the value of
the damping constant should be carefully selected
to simulate the development of the failure surface
using this numerical procedure.

To compare the dynamic behavior of the two
lattice structures, we will analyze the propagation
of plane harmonic waves. For this wave type, the
displacements (u,, u,) at position (x, y) have form

u, = Aexp(i(ax -k x —k,y)) (24)

u, = Bexp(i(at —k . x—k,y)) (25)

where @ is the angular frequency of the wave, A
and B arc the wave amplitudes and k, and k, are
the wave numbers in the x direction and y direc-
tion, respectively. The vector of wave numbers
k = (k,, k) is related to the vector of wavelength
A =(4,, 4) with the scalar product k*A =27 and
the vector of wave numbers is related to the vector
of velocities ¢ =(c,, c,), k*c = ®.

Figure 6 shows the two-dimensional represen-
tation of the lattice models used in the compres-
sion wave propagation simulation. As seen in
Figure 6, the circular area is used for this simula-
tion and wave propagates only in x-y plane. The
elastic properties of the material are £, =50 MPa,
v, =0.2. The area is 30 cm in radius and is dis-
cretized with enough number of particles in radial
direction to express the wavelength. The radius of
the particle is 2 mm and the total number of par-
ticles is 70681. Figure 6 gives the input conditions
where 4 =B =1.0 x10* cm.

Figure 7 shows the directional characteristics
for the compression wave propagating through

Figure 6. Two-dimensional representation of the lat-
tice models used in the compression wave propagation
simulation.
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Directional characteristics for the compression wave propagating through the lattice structure; the normal-

ized wave number kd, versus the normalized wave number k d, for two different frequencies.

the lattice structure where the normalized wave
number k., versus the normalized wave number
k d, for two different frequencies. From these two
figures, it can be recognized that the numerical
results for Type 1 are plotted in a circular shape
of k-k, curves and the curves of Type 2 loses cir-
cularity. The difference in the two lattice struc-
tures is the diagonal springs and this may cause
the reduction of the wave number in diagonal
direction in Type 2. It must be concluded that
the lattice model should carefully introduced in
dynamic analysis however the model can be an
expected numerical tool to simulate not only static
problems but also dynamic problems including
brittle failure.

4 CONCLUSION

In this paper, two lattice spring connecting struc-
tures for modeling of the isotropic elastic contin-
uum are compared. The purpose of the discrete
modeling is to simulate wave propagation and brit-
tle failure of rock-like materials. The results of the
plate with a crack tip demonstrate that the model
accurately represents the stress intensity factor
and the damping constant should be carefully set
to simulate the failure surface development. The
second numerical example for the wave propaga-
tion shows that the geometry of the discrete lattice
structure is important to model the dispersion of
wave. Because of the simple material characteris-
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tic used in this paper, the simulations only quali-
tatively represent the behavior of the material.
More realistic and quantitative results can be given
if inhomogeneity and discontinuity of rock-like
materials are introduced.
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Analysis of elastic wave attenuation in different rock samples
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School of Resources and Safety Engineering, Central South University, Changsha, China

ABSTRACT: The attenuation characteristics of elastic wave propagation in granite, marble, red sand-
stone, and limestone were studied utilizing the PCI-2 acoustic emission system with a lead-break test
and automated sensor test (AST) function. The results showed that the attenuation of amplitude was
faster when the source was within a certain distance from the sensor: the attenuation became slower as
the distance from the source increased. The peak frequencies of the signals in granite and red sandstone
were higher when the source was within the faster amplitude attenuation distance, and rapidly reduced
as the source moved beyond the distance at a certain extent. However, the peak frequencies of the signals
in marble and limestone remained unchanged. The primary factor influencing the attenuation of elastic
wave is the density of mineral particles within the rock; the second factor is the development of structures
within the rock, such as joints and stratification.

1 INTRODUCTION Many researches are focused on the attenuation
of acoustic emission signals due to the operability
During elastic wave propagation, its energy can  of such tests in a laboratory. Vinagradov (Vinagra-
be consumed by geometrical diffusion, material  dov 1957, Vinagradov 1962) founded two types of
absorption, and scattering. Therefore, param-  acoustic emission signals (durative and attenuative-
eters of an elastic wave, such as amplitude and  type signals), based on his research in field and lab-
frequency, decrease with increasing propagation  oratory tests. These two typical signals obviously
distance, which is called elastic wave attenuation  derived from different fracture modes. Bucheim
(Hardy 2003). The degree of attenuation in elastic ~ (Bucheim 1958) pointed out that the acoustic emis-
wave is closely related to the propagating medium,  sion signals generated from a rock sample by shear
especially in rock materials with heterogeneous  fractures were characterized by short duration time
internal constructions that determine the attenua-  and wide frequency spectra, whereas those gener-
tion characteristics. ated by tensile fractures had long duration time and
Many scholars have carried out a series of  anarrow frequency spectrum. In addition, research
researches on attenuation characteristics of seis-  has focused on theoretical wave equation analysis
mic waves in rock masses. It is considered that the  and amplitude variation of the constitutive equa-
amplitude attenuation of seismic wave is closely  tions of acoustic emission during propagation (Liu
related to the quality factors of stratum, seismic et al. 2012, Zou et al. 2004).
velocity, and frequency, which are affected by Elastic wave attenuation in rock has a strong
friction, fluid flow, viscosity, and diffusion. The  relationship with the internal structure and compo-
attenuations of P- and S-waves are different (Fut-  sition of rock, so how this attenuation is affected
terman 1962, Toksoz et al. 1979, White 1975). by rock types and the ways in which the parame-
The frequency characteristics of micro-seismic  ters of elastic wave signals change as propagation
signals are studied by wavelet transform and win-  progresses are worthy of discussion. Given this, the
dow Fourier transform. Four different variation  lead-break test and the automated sensor test (AST)
trends of frequency have been identified (Lietal.  function of an acoustic emission instrument were
2008). In fact, earthquakes, micro-seismic events,  used to study the attenuation characteristics of elas-
and acoustic emission are all external appear-  tic waves in four different types of rock materials:
ances of released elastic energy of rupture in a  granite, marble, sandstone and limestone. The rela-
rock mass: the only difference is their scale of  tionship between the elastic wave attenuation and
rupture. the microscopic composition of rocks is discussed.
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