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ABSTRACT: The purpose of this research is to verify our proposed mathematical model for estimating
the dynamic shear strength of rocks and to establish an evaluation procedure for obtaining dynamic shear
strength. Monotonic loading tests and cyclic loading tests of natural tuff’ were conducted to obtain the
mathematical model parameters. Then multistep shear tests under cyclic and seismic-wave loadings were
performed, followed by simulations using the mathematical model. The test results showed the dynamic
strength exceeding the static strength, agreeing with previous research. Furthermore, the dynamic strength
calculated from the mathematical model of natural tuff was generally consistent with the dynamic strength

obtained from the experimental data.

1 INTRODUCTION

Revisions to seismic design review guidelines for
nuclear power plant facilities have increased the
level of seismic ground motion designs from the
level of traditional designs, thereby increasing the
importance of dynamic analysis when evaluating
the stability of the power plant’s foundation bed-
rock and the rock slope around it. This has also
increased the need to correctly evaluate the physi-
cal properties of the bedrock used in dynamic
analyses, particularly dynamic strength. Dynamic
strength, which is the strength used in dynamic
analyses, does not have a clear definition, but for
purposes of seismic design it can be said to be
the strength exerted when a cyclic shear stress is
applied in an irregular waveform such as a seis-
mic wave. Because seismic waveforms are diverse,
and the stress (waveform) inside the ground also
varies depending on the location, it is difficult to
formulate a single definition of dynamic strength.
For these reasons, in current usage, the strength
exerted when a sinusoidal load is applied is gener-
ally called the “dynamic strength.”

In the seismic design of nuclear power plants,
static strength has traditionally been used, based
on the fact that when comparing dynamic and
static strengths, the dynamic strength does not
fall below the static strength (JEA 2008). This
"dynamic strength > static strength" relationship
has been confirmed for various rock types (Nishi
& Esashi 1982, Yoshinaka et al.1987, Sugiyama
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et al. 2001, Ookuma 2010, Okada and Ito 2009).
However, this data is mostly from pulsating load-
ing in which the direction of shear stress is not
reversed and includes no alternating loading data.
In addition, there is considerable data for incre-
mental loading of sinusoidal waves and much less
data for seismic (irregular) waves, and the relation-
ship between the two is not clear. To resolve these
issues, in this research, in addition to comparing
pulsating loading to alternating loading using
natural tuff, we conducted multistep cyclic loading
tests using sine waves and seismic waves. Finally,
we validated our proposed mathematical model for
evaluating dynamic strength by comparing it with
the test results.

2 MATHEMATICAL MODEL OUTLINE OF
DYNAMIC STRENGTH

2.1 Effect of fatigue

When the stress amplitude is fixed and repeated
stress is applied until the failure of specimen, the
stress amplitude decreases as the number of cycles
increases. The function expressing this relationship
is defined as the fatigue function f; and expressed
as follows:
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where N, (2 1)is the number of cycles at the time of
failure, 7, y, is the shear strength at the time of fail-
ure after the loading N, 7, ,_, is the shear strength
during monotonic loading, and a is a parameter
defining the slope of the function, which means
that the decrease in strength is greater for larger
values of a.

2.2 Effect of loading rate

It is also known that strength tends to increase as
the loading rate increases. In contrast to the fatigue
effect, which always decreases the strength as the
number of repetitions increases, increasing the
loading rate tends to increase the strength. In our
proposed mathematical model, the relationship
between dynamic and static strengths is determined
mainly by these two effects. We define the function
/> as the function that represents the relationship
between the loading rate and shear strength, and
define it as follows:

f(&) =1 =a+ pfloge (2)

where £ is the axial strain rate (%/min), 7; is the
maximum shear strength (MPa), and o and f are
parameters.

2.3 Integration of fatigue and loading rate effects

Letting 7, in Eq. (2) be the strength 7, _, atloading
time N =1 in Eq. (1), the following relationship is
obtained:

%N, =1 fo=(a+ flogé)(l-a-logN,) (3)

From this, the relationship between N, (Z1)
and 7, ,, at any strain rate can be obtained. Note
that the derivation of Eq. (3) assumes that the rela-
tion in Eq. (1) is satisfied regardless of the load-
ing rate. However, experimental data confirms
that this assumption is to some extent reasonable
(Okada & Ito 2009).

2.4 Application of cumulative damage rule

To express the impact of an arbitrary waveform
in the mathematical model, it is necessary to
know the impact of the cyclic loading that leads
to fracture (hereinafter referred to as the “damage
effect”). However, because no such test data was
available, we applied the cumulative damage rule
used in metal materials design (Otaki 2007). The
strength exerted after N wave loading (hereinafter
referred to as “residual strength”) is assumed to
change linearly with respect to its fracture count.

Adopting this perspective, the damage function
£, representing the effect of damage due to cyclic
loading can be expressed as follows:

AN)= 21 d (N -1) )
LN=1

where N is the number of cycles on the way to
failure, and 7, , is the strength (residual strength)
exerted after N cycles. At the time of failure
(when N = N,), Eq. (1) = Eq. (4) obtains. Because
Ji(Np) =£{(N,), the following relation is obtained:

b
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Therefore, the parameter d in Eq. (4) is deter-
mined from Eq. (5) when the stress ratio %
is determined. The following relationship is then
obtained from Egs. (2) and (4):

&y =ty fr=(a+ Blog&){l-d(N -1)} (©6)

Note that for Eq. (6) to hold in the same way as
Eq. (3), the relationship shown in Eq. (4) must hold
regardless of the loading rate. Lacking empirical
data on this issue, here we make the same assump-
tions as the cumulative damage rule. This assump-
tion makes it possible to determine the degree of
damage even if the stress ratio - is determined
at different loading rates. L

2.5  An example of dynamic strength calculation

Figure 1 shows an example of calculating the
dynamic strength when different stress amplitudes
are applied. Loading is performed 6 times at stress
ratio 0.9, 30 times at stress ratio 0.8, and 600 times
at stress ratio 0.7. As shown in the figure, when
cyclic loading is applied five times at a stress ratio
of 0.9, the vertical axis (residual strength) is 0.94.
Next, when cyclic loading is applied continuously
at a stress ratio of 0.8, the residual strength of 0.94
carries over (it moves to the right in the figure),
and the damage at the 0.8 stress ratio is the same
as for the previous 30 iterations. When loading
is iterated a further 30 times from this point, the
residual strength becomes 0.88. When cyclic load-
ing is again applied continuously at stress ratio 0.7,
the residual strength of 0.88 is carried over (moves
further to the right in the figure), and the damage
at stress ratio 0.7 is the same as for the previous 400
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Figure 1. Example of calculating dynamic strength

using the mathematical model.

iterations. After cyclic loading is applied another
600 times from this point, the residual strength
reaches 1000 cycles expressed in Eq. (1), which
means failure occurs.

Dynamic strength can therefore be delined
as the strength at the point in time when Eq. (4)
matches Eq. (1) (as described above). Note that if
the loading rate changes at some point before fail-
ure, 7, , _, Will change based on Eq. (2). In other
words, Fig. 1 would show only a relative change in
the stress ratio &

F_Np

'

2.6 Overview of the dynamic strength evaluation
method

Using our proposed mathematical model, the
dynamic strength can be obtained by following the
steps below.

1. Perform cyclic loading tests at different shear

stress amplitudes. The shear stress amplitude is

not incremented stepwise in a single test, but is
held constant until fracture in only one step.

. Letting the horizontal axis be the number of
iterations (logarithmic) and the vertical axis be
the normalized stress ratio, obtain the fatigue
function f,.

. Perform monotonic loading test at several load-
ing rates in different orders. Set the range of
loading rates so that it covers the loading rate in
(1) and the static test rates.

. Letting the horizontal axis be the strain rate
(logarithmic) and the vertical axis be the shear
strength, obtain the rate function f,.

. Using the functions f; and £, obtained in (2) and
(4) above and the damage function f;, obtain the
dynamic strength of various regular waves and
irregular waves (seismic waves).
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3 VALIDATION OF THE DYNAMIC
STRENGTH EVALUATION METHOD

3.1

The specimens used consisted of rhyolitic welded
tuff from the Neogene Miocene (also known as “Oya
tuff stone”). Using a core drill, cutter, and edge-
shaping machine, block sample specimens (cubes of
approximately 30 cm) were shaped into cylindrical
specimens of a diameter of approximately 50 mm
and a height of approximately 20 mm.

Specimens

3.2 Test equipment

The box shear test equipment used for test. A
pneumatic servo-type two-axis loading apparatus
is used. Both the maximum vertical load and maxi-
mum shear load are 20 kN. A bellofram cylinder is
electrically controlled by a pneumatic servo valve,
and the load cell output value (voltage) is fed back
for control. The specimen is encased in the shear
box through steel spacers, and a vertical force is
loaded with the pressure plate separated from the
shear box. Grease was applied to reduce friction
between the pressure plate and the spacer and the
shear box.

3.3 Test method

All tests were carried out as box shear tests with
constant vertical stress. Except for the loading
method, the tests confirmed in principle to the
constant stress, box shear test method stand-
ard (Japanese Geotechnical Society 2009). A list
of loading methods and conditions is given in
Table 1. Series OT-1 is a monotonic loading test
(static test). The strain rate was set to the standard
0.05 mm/min. The vertical pressure was set from
0.2 MPa to 2.0 MPa.

Series OT-2 is a cyclic loading test carried out to
investigate the fatigue effect. For comparison, both
pulsating and alternating cyclic loading tests were
performed. As shown in Figure 2, the maximum
shear stress (247) was assumed to be equal under
the alternating and pulsating load conditions. In
other words, the alternating stress amplitude (247)
was twice the pulsating stress amplitude (A7). Both
the loading frequencies were 0.1 Hz, waveforms
were sine waves, and the maximum shear stress 2A7
ranged from 1.6 MPa to 2.0 MPa. Note that the
vertical pressure was fixed at 0.2 MPa.

Series OT-3, a monotonic loading test for inves-
tigating the rate effect, was performed on various
strain rates (0.05-10 mm/min).

Series OT-4 is a multistep cyclic loading test
for validating the strength evaluation formula. It



Table 1. List of tests.
Confining
pressure Quantity
Series Purpose Loading method Test conditions (MPa) (pcs)
OT-1 Static strength Monotonic Strain rate: 0.05 mm/min 0.21t02.0 16
Cyclic Frequency: 0.1 Hz, Stress amplitude: 1.6 to
OT-2a Fatigue effect (pulsating) 2.0 MPa 0.2 6
Cyclic Frequency: 0.1 Hz, Stress amplitude: 1.6 to
OT-2b Fatigue effect (alternating) 2.0 MPa 0.2 7
Monotonic
OT-3 Rate effect loading Strain rate: 0.05 to 10 mm/min 0.2 8
OT-4a Model Multistep cyclic No. Frequency = Waves ~ Number of 0.2 4
validation (Hz) (times)  steps
4a-1 1 5 5
4a-2 0.1 10 5
4a-3 0.01 30 10
4a-4 0.5 10 10
OT-4b Model Multistep cyclic  No. Seismic wave Number of 0.2 4
validation steps
4b-1 Time axis 50 times 5
4b-2 Time axis 20 times S
4b-3 Time axis 10 times 10
4b-4 Time axis 5 times 10
) , tions of the test equipment, as indicated in Table 1,
T Pulsating T Alternating
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Figure 2. Comparison between pulsating loading and
alternating loading.
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Figure 3.  Artificial seismic wave that was used.

is performed entirely using alternating loading.
Series OT-4a uses sine waves in the same way as
series OT-2a. The frequency, number of waves,
and number of steps are as indicated in Table 1.
Series OT-4b uses the artificially created seismic
wave, indicated in Figure 3 (Nuclear power civil
engineering committee ground stability evaluation
subcommittee 2004). However, owing to the limita-

the time axis was set to 5-50 times, and the number
of steps to 5-10 steps.

The number of steps n is calculated as follows.
Setting the maximum stress amplitude equal to
the static strength, the seismic wave causes the
stress amplitude at which loading is performed
to increase by increments of 1/n at each step
until fracture (1/n, 2/n, ..., n/n( = static strength),
n+l/n, ...).

3.4 Test results and discussion

The strength characteristics obtained from series
OT-1 are shown in Figure 4. The test results exhibit
wide variation but yield the values ¢ = 1.38 MPa
and ¢ = 51°. Previous triaxial tests on Oya tuff
stone under different scales and drainage con-
ditions yielded values of ¢ = 1.5~2.1 MPa and
¢ =27~35° (Tani 2006). The ¢ value was lower and
the ¢ value was higher than the previous research.
This can likely be owing to factors like different
test methods, different confining pressure levels
(smaller stress in our tests), and different miso con-
tents (lower in our tests).

An example of the results of alternating loading
in the series OT-2 [atigue test is shown in Figure 5.
The shear displacement increases and decreases as
the loading progresses, and then shear displace-
ment sharply increases once the shear stress can
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no longer be maintained (about 76 s). All the test
cases show the same clear, rapid increase in shear
displacement at specific points. These points were
defined as failure points, and were counted and
recorded as the number of cycles to failure N,
Figure 6 shows that the relationship between N,
and the strength normalized with the single-wave
fracture strength. This relationship corresponds to
Eq. (1). The equation approximated by the least

7
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* c=1.38, ¢=51°

o (MPa)

Figure 4. Results of static tests.
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Figure 6. Cyclic test results.

squares method is shown as a solid line in the fig-
ure. Although there are fluctuations in the data,
no large difference between the pulsating condi-
tion and alternating condition can be observed.
The parameter values for Eq. (1) were a = 0.0496
(pulsating) and 0.0474 (alternating). Compared
to the results for natural mudstone (¢ =0.04~0.1)
(Okada & Tto 2009), the fatigue effect was smaller
in our tests. Because of the small difference
between the pulsating and alternating conditions,
the multistep cyclic test (series OT-4) was carried
out only under the alternating condition.

The relationship between loading rate and
shear strength obtained in the series OT-3 test
is shown in Figure 7. Note that the loading rate
on the horizontal axis is the shear displacement
rate (mm/min). This relationship corresponds to
Eq. (2). The equation approximated by the least
squares method is indicated by a solid line in the
figure. This yields values for the parameters in Eq.
(2) of o =1.78, B =0.158. Because a represents
the strength when the strain rate is | mm/min, we
divide the right side of Eq. (2) by this value, yield-
ing a value of 0.089 for f/c. This value represents
the rate of strength increase due to the increase
in strain rate relative to the strain rate of 1 mm/
min. This value is larger than the corresponding
result for natural mudstone (f/a =0.07) (Okada &
Tto 2009). Figure 8 shows example results for the
multistep cyclic test in series OT-4, both for sine
waves (0.1 Hz, 5 steps, 10 waves) and for seismic
waves(5 steps, time axis increased 10 times). As the
loading progresses, the axial strain increases under
both load conditions, and then the axial strain
increases when axial differential stress amplitude
can no longer be maintained. In all cases the axial
strain exhibits the same clear, rapid increase at spe-
cific points. These points were defined as failure
points, and the maximum stress endured before
fracture was defined as the final multistep cyclic
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Figure 8. Examples of multistep cyclic loading tests.

strength (i.e., the dynamic strength). In alternating
loading, it appeared to be random whether fail-
ure occurred with shear stress 7 on the positive or
negative side.

The dynamic strength was obtained from the
multistep cyclic test and then compared with the
calculation result obtained by the evaluation for-
mula. The static strength is set to the strength of
0;=0.2 MPa, as shown in Fig. 5. The calculation of
the dynamic strength loading rate using the math-
ematical model proceeds in the following manner.
Letting the loading time be the time required for
N = 1/4 of a wave corresponding to the monot-
onic loading test from sine wave frequency f,, the
shear displacement at the time of {racture can be
considered an almost constant value (0.65 mm)
regardless of the loading rate, and converted to a
displacement rate under conditions where failure
displacement is reached at one amplitude. At this
time, the displacement rate for f, = 0.1 Hz is cal-
culated as & = 15.6 mm/min. Under the present
conditions where the shear stress increases at the
same frequency in multiple steps, the smaller the
stress amplitude, the smaller the displacement rate
of the load. Therefore, when the stress amplitude is
1/5 relative to the static strength, the displacement
rate is also calculated as 1/5.
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The calculation of the seismic wave loading rate
using the mathematical model proceeds in the fol-
lowing manner (Figure 9). The point where the
seismic wave crosses the X axis (Y = 0) is identi-
fied, and the time interval (7,) is obtained for each
half wave. In the same way as for the sine wave,
the shear displacement at the time of fracture rate
was calculated as & =0.65/(7,/2/60) mm/min. If
the seismic wave time axis is stretched by 10 times,
the displacement rate will be 1/10. In addition, as
shown in Fig. 9, letting the respective stress histo-
ries be the maximum value on the positive side of
the divided wave and the minimum value on the
negative side, the dynamic strength is calculated
separately for each side from the mathematical
model, and the side with the maximum absolute
value is taken as the dynamic strength.

Figure 10 shows the relationship between the
dynamic strength obtained from the calculation
and the dynamic strength obtained from the exper-
iment normalized with the static strength. On the
vertical axis, dynamic strength (experiment)/static
strength is from 1.28 to 1.81. On the horizon-
tal axis, the dynamic strength (calculated)/static
strength is from 1.09 to 1.31. The seismic wave



test tends to underestimate the result values in the
mathematical model compared to the sine wave
test. Comparing the experimental and calculated
results, the experimental results were always 3-46%
larger than the calculation results. In cases where
the increase in the rate of the dynamic strength
was relatively large in the experimental results, the
calculation results also exhibit a relatively large
strength result. This suggests that the mathemati-
cal model is generally reasonable.

Our assumption of the cumulative damage
rule could explain why the seismic wave results
underestimate the calculation results compared to
sine waves, and why the calculation results always
underestimate the experimental results. The cumu-
lative damage rule is based on the assumption that
internal damage accumulates linearly as the load
increases. However, the relationship is thought to
be nonlinear (the internal damage increases as the
load increases).

In any case, because no experimental data is
available, further research is needed. However, the
fact that the strength of the experiment result is
always larger than the calculation result can also be
viewed as an advantage of our dynamic strength
evaluation method, in the sense that it tends to err
on the side of safety.

4 CONCLUSION

1. To clarify the impact of the alternating load-
ing condition, which reverses the direction of
the shear stress, a cyclic loading test was con-
ducted on natural tuff. The results showed no
difference in strength due to the loading condi-
tion (pulsating loading vs. alternating loading).
Furthermore, similar to the previous studies,
the dynamic strength was found to exceed the
static strength during multistep loading under
the alternating condition.

. To clarify the relationship between the strength
exerted under regular waves and irregular
waves, the parameters required by the math-
ematical model were acquired, and a multistep
cyclic loading test was performed using regular
waves and irregular waves. These experimental
results were then compared with the calcula-
tion results obtained from the mathematical
model. The dynamic strength calculated using
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the mathematical model was slightly smaller
than the dynamic strength obtained from the
experiment. However, the results generally indi-
cate that it is possible to evaluate the variation
in the strength exerted owing to regular waves
and irregular waves. Our results therefore dem-
onstrate that it is possible to perform dynamic
strength evaluation that errs on the side of
safety based on a series of laboratory tests to
acquire the parameters followed by the calcula-
tions in our model.
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