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ABSTRACT: Inslope stability analyses, the failure surface is often assumed to be predefined as a persistent
flat or circular concave plane and the slide resistance along the plane is evaluated. Though this procedure
gives the safety factor based on the limit equilibrium theory, the existence of such plane is highly unlikely,
and a complex interaction between pre-existing flaws, stress concentration and resulting crack generation,
these are not modeled. The development of advanced numerical methods is the key issues of importance. This
paper attempts to develop a numerical procedure providing means to analyze the kinetic failure process and
the state of stability using a discrete approach. The ground is modeled with an assembly of mass points con-
nected by a pair of springs, normal and tangential direction and the translational motion of each mass point is

calculated by solving the equation of motion. The stress state is evaluated on each mass point.

1 INTRODUCTION

Slope instability occurs in many parts of urban and
rural areas and causes damages to housing, roads,
railways and other facilities. Slope engineering has
always involved some form of risk management and
this has led to the process of the identification and the
characterization of the potential slope failure together
with evaluation of their frequency of occurrence. An
essential part of the hazard (slope failure) identifi-
cation is the prediction in terms of the character of
failure (type, volume), the post-failure motion (travel
distance, velocity) and the state of activity (Fell, et al.
2008). The literatures of slope stability analysis using
the limit equilibrium method (LEM) and the finite
element method (FEM) were reviewed by Duncan
(1996), and a number of valuable lessons concern-
ing the advantages and limitations of the methods
for use in engineering problems were presented. Jing
and Hudson (2002) presented a review of the tech-
niques, advances problems and future development
directions in numerical modeling for rock mechan-
ics and rock engineering. The expanded version of
the brief review was presented by Jing (2003) and
he has suggested that computer methods available
can be still inadequate when facing the challenge of
practical problems, especially when representation
of rock fracture systems and fracture behavior are
a pre-condition for successful modeling. Despite
of all the advances in both continuum and discrete
approaches, the development of advanced numerical
methods is the key issues of importance. This paper
attempts to develop a numerical procedure providing
means to analyze the kinetic failure process and the
state of stability as a function of a trial gravitational
acceleration to a lattice spring model. This procedure
is also able to explain a possible depth and volume of
failure at the site.
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Most rock slopes are inhomogeneous structures
comprising anisotropic layers of rock character-
ized by different material properties, and they are
often discontinuous because of jointing, bedding
and fault. In rock slope stability analyses, the fail-
ure surface is often assumed to be predefined as a
persistent plane or series of interconnected planes,
where the planes are fitted to the surfaces based
on the structural observation. Such assumptions
are partly due to the constraints of the analyti-
cal technique employed (e.g. limit equilibrium
method, the distinct element method, etc.) and
can be valid in cases in which the response of sin-
gle discontinuity or a small number of disconti-
nuities is of critical importance on the stability.
However, especially on a large scale slope, it is
highly unlikely that such a system of fully persis-
tent discontinuous planes exists a priori to form
the failure surface. Instead, the persistence of the
key discontinuities may be limited and a complex
interaction between pre-existing flaws, stress
concentration and resulting crack generation, is
required to bring the slope to failure. In small
engineered slopes, excavation gives significant
changes in stress distribution in the slopes and
may generate fully persistent planes keep propa-
gating with stress redistribution. Larger natural
rock slopes seldom experience such a disturbance
and have stood in relatively stable features over
the period of thousands of years. This does not
imply that in natural rock slopes a system of dis-
continuities may not be interconnected develop-
ing the portion of where the failure surface will be
formed. Strength degradation may occur in rock
mass with time-dependent manner and drive the
slope unstable state. Thus, rock slope instability
problem requires the progressive failure modeling
to drive the slope to catastrophic events.
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Figure 1. Failure surface initiation and its propagation (after Bjerrum (1967))

2 MODELING OF THE FAILURE SURFACE

Based on the coulomb shearing strength criterion,
both the shearing resistance depending on the nor-
mal stress value (i.e. the frictional strength) and the
cohesion of intact rock between discontinuous joints
resist to shear failure. At the tip of the joints, stresses
would increase and subsequent failure in rock would
occur. Progressive failure in rock mass would involve
the failure of intact rock as their strength is exceeded.
There have been a number of investigations focused
on the failure process of rock slope using the finite
element method and the boundary element method.
Kaneko et al. (1997) used the displacement-
discontinuity method (DDM) and fractures’ princi-
ples to model the progressive development of shear
crack in rock slope. In their analysis, rock material
was assumed to be homogeneous and any pre-
existing cracks were not considered. They compared
the DDM results with the conventional limit equi-
librium method (LEM) and discussed the allowable
slope height under the given strength parameters
and the slope angle. Eberhardt et al. (2004) dis-
cussed some aspects of the modeling of progressive

failuze plane

Figure 2. Modeling of crack generation: (a):element
discritization and failure plane, (b)continuous discritization
of elements along the direction of new cracks, (c) a priori
placement of crack element along the possible direction of
the crack propagation.
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failure surface development linking initiation and
degradation to eventual catastrophic slope failure,
using a hybrid method that combines both contin-
uum and discontinuum numerical techniques to
model fracture propagation. They concluded that
the use of the hybrid modeling technique helped
to provide important insight as to the underlying
mechanism, focusing on the example of a rockslide
in the Swiss Alps.

Developments in the field of rock slope analysis
were reviewed by Stead et al. (2006). They have
attempted to illustrate the wide range of tools avail-
able with particular emphasis on emerging powerful
modeling of hybrid techniques that allow realistic
simulation of rock slope failure. Generally, there
are two choices of hybrid technique; technique of
hybrid continuum-/discrete-element method and
technique based on a discrete modeling. In the first
choice, fracture plane is aligned in two ways shown
in Figure 2.

1. a process known as intra-element fracturing
where a series of new nodal points and elements
are systematically created as shown Figure 2(b).

2. a process known as inter-element fracturing
where a series of new nodal points are system-
atically created but no new element is generated
as shown Figure 2(c). This process is usually
preferred from the computational standpoint and
thediscrete fracture orientationisaligned with the
best oriented element boundary attached to the
node considered.

The presence of contact phenomena during post
fracturing requires an effective contact simulation
procedure. One fundamental advantage of the dis-
crete modeling is that the phenomena can be incor-
porated into the method by the rigid body or the
mass point contact with the spring-dashpot system.
This method has been used to investigate a wide



variety of rock failure mechanisms. In these analy-
ses, cracks propagate with the path calculated by the
failure criterion under the stress state. This paper
presents a numerical trial to simulate the progres-
sive development of failure surface in slope.

3 DISCRETE ELEMENT MODELING FOR
ELASTICITY

The body to be analyzed is divided into small por-
tions and is represented by a system of points linked
together with the neighboring points. The particles
and bonds form a network system representing the
material. For this system, the equation of motion can
be expressed as
mii+ca+ku=f 1
where u represents the vector of particle displace-
ment, K is the stiffness, m is the mass matrix, ¢ is
the damping matrix and f is the vector of external
force. Equation (1) is solved by using the explicit
finite difference scheme.
¢ .
i, = ;[f —cit, —ku, | P)

The displacement of particle at time 7+Af can be
expressed as

_ )

Au, =Au,_,, +1i,Az 3)
where Au=u,,-u. The new position of particle is
also expressed as

u,,,, =u, i, A+, AR /2 @)
The particle velocity at ¢ is given by
u-u
L —A o
= # +ii,A7/2 )

To keep the computation stable, the time step
could be chosen as

dy

“

(6)

At <min

where d is the contact length, that is the distance
between particles, and ¢, is the P-wave velocity.
For static simulation, the equations of motion are
damped to reach an equilibrium state under given
boundary conditions as quickly as possible. In this
modeling, the damping effect is incorporated as
written in the following.

i, = ﬁ[zft —sgn(it,_y, ) a‘zfl‘]

where a is the damping constant which is independ-
ent of mechanical properties of the material.

(7
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We assume that the medium is loaded from zero
condition to an initial condition defined by the strain
e, and the stress o, For such a system, one can write
the displacement for a particle (or element) p with
position x, as follows

=€..XP

p
U i

®)
where e, should be a symmetric tensor which is cal-
culated by removing an asymmetric tensor from the
displacement-gradient tensor. The rotation-related
term is removed from the relative translational dis-
placement between these two points, then this method
ensures that the calculated strain is independent of
rotational displacement (Nishimura, T. et. al. 2014).
The following contact law, which relates normal
and shear forces F_, F . to normal and shear relative

. (n) (s
displacements Um), Uw i‘lOldS at the contact

F.=kU .\, F,=kU 9
() =Y Fiy =% ©
Let us assume that a contact m connects two par-
ticles pl and p2, then the normal and shear relative
displacements can be written as

m

Y)
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(10)

m
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where the relative displacement at the contact Au,"
is given as

(

where /™ is the normal unit vector. The total force f;
at contact m can be written as

Upyy = =Up I (11)

X0l —xP?

m o pm
=e.d, I’
J J

€y i7"

; (12)

m _
Aui =

S =R TR (M =T (13)
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Notice that Einstein summation convention with
dummy subscript i, j, k, / is used in the preceding equa-

tions. The total strain energy stored per unit volume is

(

where N_ is the number of contacts inside the
medium, /is the medium volume. The stress tensor
of the continuum can be obtained through the classi-
cal elastic theory, and it can be written as (assuming
symmetrical stress) (Walton, K. 1987, Richard,J.B.&
Leo, R. 1988).
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From Equations (13) and (15), we end up with
N,

A w!

%y

m=1

(kleud 1y + ke 17 (16)
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The constitutive matrix Cijk] in the classical elas-
ticity theory is expressed as

05 = Ciey 17)

and finally, by substituting Equation (17) into

Equation (16), C,;, can be given as

N
1 - kmdl:nz mym m 7
Cp = 72 = (1S I TS,
m=1
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where Jii is the Kronecker’s delta. Then, the relation-
ship the micro-mechanical parameters k , k_and the
macro material constants the Young’ modulus £,
and the Poisson’s ratio v, can be obtained by com-
paring Equation (18) to the classical elastic matrix.
As seen in this equation, the values of the stiffness
are influenced by the normal unit vector, therefore,
the lattice structure should be carefully modeled. A
18-bond cubic lattice geometry as shown in Figure 3
is prepared. The micro-mechanical parameters &, k_
are obtained by
k, = Eo—do (19)
5(1-2v,)

_ (1-4vy) Eyd,
() (= 2vy) 0

Equation (20) shows that the spring stiffness of
negative occurs when v, is greater than 0.25. For this
condition, we have failed to obtain the quasi-static
state under a given static boundary condition and the
model shows unstable behavior. Therefore, numer-
ical results shown in this paper are carried out for
v,<0.25. This negative effect of the Poisson’s ratio
in such lattice modeling has also been reported (e.g.
Zhao, G. F. Fang, J. & Zhao, J. 2011).

4 NUMERICAL SIMULATION ON PROGRES-
SIVE FAILURE IN SLOPE

Figure 3 shows the slope model which is formed
by the discrete lattice spring model. The height
of slope 4 is 100m and the bottom width w is
200m. Slope inclination is expressed with tanp=2
(B=63.7°). The Young’s modulus and the Poisson’s
ratio are set 1000MPa and 0.24 respectively. Figure
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4 shows the results of T for g=9.8m/s? (1G) and the
stress concentration is recognized around the slope
toe. Then, the gravitational acceleration is assumed
to increase as nG (n>1). This condition is to load
the slope model and to simulate the progressive
development of failure surface and slope instabil-
ity. We have introduced the Mohr-coulomb failure
criterion written as;

F=(0,-0,)+(0,+0;)sing—2ccos¢ (21

o,: the major principal stress, o,: the minor prin-
cipal stress, c: cohesion, ¢: frictional angle. When
F=0 the stress state fulfills the failure criterion and
F>0 represents by points outside the failure surface.
Plastic strains may develop during increment from
an initial state belonging to the yield surface (F=0).
The plastic strain is governed by the plastic flow
rule and then the corresponding stress increment
to the elastic strain is evaluated so as to hold the
stress state on/inside the yield surface. This proce-
dure is the same to the ordinal numerical modeling
of plasticity.

Figure 5 demonstrates the transition from stable
slope conditions to those of shear failure by showing
the evolution of failure points. The parameter related
to the strength are set to ¢=35kPa, $=50° and these
values keep constant and no reduction is assumed
during the loading. Though the assumptions are
introduced, this numerical modeling can be used to
examine the evolution of stresses strain and failure
surface development within the rock slope. From
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Figure 3. Rock slope model with constant inclination using
the asscmbly of circular clement.
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Figure 5. Progressive development of failure surface.

these figures, the shear-based Mohr-coulomb frac-
ture surface has propagated from the toe of the slope
model to the inner part. These figures also involve the
progressive fracturing cross to the shear-based sur-
face mentioned the above. To more closely examine
these mechanisms for the development, it can be rec-
ognized that firstly the shear-based fracture surface
has propagated from the toe of the slope and secondly
the tensile crack propagate in the slide mass as illus-
trated in Figure 6. The failure criterion used in this
simulation is set up to explain tensile failure without
the inclusion of a predefined failure element and the
stress state on the mass point calculated by Equation
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Tensile failure

. Shear failure
Displacement

Figure 6. Development of shear surface and propagation
of tensile damage upwards through slide mass, dividing the
slide mass into blocks.

(15) and examined by Equation (21), the stress state is
inside the failure criterion or outside including tensile
fracturing. Results show that a zone of yield due to
shear damage develops near the toe of slope and this
development transforms into a tensile failure in the
slide body. This transformation of failure continues
through the body and divides the body into blocks.
These progressive fracturing must lead the mass to
collapse of the frontal region of the slope. This model
results agree with the analysis by Eberhaldt (2004).

5 CONCLUSION

Various numerical methods (continuum and discon-
tinuum methods, and hybrid methods which com-
bine both continuum and discontinuum techniques
to simulate fracturing process) have been applied to
demonstrate the evolution of failure in rock slope.
In this paper, a numerical modeling of progressive
failure in rock mass using the discrete lattice spring
model is introduced to simulate the rock slope fail-
ure. The modeling could give a possible failure
volume of rock material based on the geometrical
data and strength properties, such as cohesion and
internal friction angle. No decisive statement about
the effect of the mechanical parameters can be made
because the analysis was performed under the lim-
ited input values. On going work should be done
incorporating the effects of the macro parameters
and the initial stress condition.
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